

. . . . . . . . . . . . . . . . . .

# CHE1031 Module 7 lecture examples: Chemical bonding

# 7.1: Ionic bonding [sidebar = optional]

**1.** Combine aluminum and oxygen to create an ionic compound.

- **2.** Write the electron configurations of the Cr<sup>+3</sup> and Zn<sup>+2</sup> cations.
- **3.** Write the electron configurations of the K and Mg cations.
- **4.** Write the electron configurations of the Se and I anions.
- **5.** Write the electron configurations of the P atom <u>and</u> anion.

## 7.2: Covalent bonding

6. Determine the types of bonds between these atoms and label their polarities.

- C H
- S H
- C N
- N H
- C O
- 0 H

**7.** Determine the types of bonds in potassium nitrate and show polarity arrows.





## 7.3: Lewis symbols & structures

- **8.** Use Lewis symbols and arrows to diagram out the formation of aluminum fluoride from aluminum and fluoride atoms.
- **9. Lewis structures** are used to show the structure and bonding patterns of covalent molecules.
  - A pair of shared e- = : = ---
  - Remember to show the unbonded electron pairs

H. + H. → H:H

 $\ddot{\operatorname{Cl}}:$  +  $\ddot{\operatorname{Cl}}:$   $\longrightarrow$   $\ddot{\operatorname{Cl}}:\ddot{\operatorname{Cl}}:$ 

**10.** Draw Lewis structures for these:

- CHO2<sup>-1</sup> NO<sup>+1</sup> OF2
- 11. NASA's Cassini-Huygens mission detected a cloud of toxic hydrogen cyanide (HCN) on Titan, one of Saturn's moons. Titan's atmosphere also includes ethane (H3CCH3), acetylene (HCCH) and ammonia (NH3). Draw their Lewis structures!
- **12.** Both carbon monoxide and carbon dioxide are produced by combustion of fossil fuels. Draw their Lewis structures.
- 13. Draw the Lewis structure of nitric oxide (NO). It's an exception to the octet rule!
- **14.** Draw the Lewis structure of beryllium dihydride (BeH2). It's an exception to the octet rule!
- 15. Draw the Lewis structure of boron trifluoride (BF3). It's an exception to the octet rule!
- **16.** Draw the Lewis structure of phosphorus pentachloride (PCI5). It's an exception to the octet rule!
- 17. Draw the Lewis structure of sulfur hexafluoride (SF6). It's an exception to the octet rule!
- **18.** Write the Lewis structures for XeF2, XeF4, XeF6 <u>and</u> identify any exceptions to the octet rule.

#### 7.4: Formal charges & resonance

**19.** Calculate formal charges in ICl4<sup>-1</sup>. Where is the -1 charge?



**20.** Calculate formal charges in carbon monoxide.

**21.** Which is the 'best' structure for carbon dioxide?

 $\ddot{O} = C = \ddot{O}$  :  $O \equiv C - \ddot{O}$ :  $\ddot{O} = O = \ddot{C}$  Structure 0 0 0 +1 0 -1 0 +2 -2 Formal charge

22. Which is the 'best' structure for the thiocyanate ion (-1)?

| Structure     | [:Ñ= | =C= | = <b>::</b> ] <sup>-</sup> | [:c= | =N= | =s:]- | [:c= | =s=::] | • |
|---------------|------|-----|----------------------------|------|-----|-------|------|--------|---|
| Formal charge | -1   | 0   | 0                          | -2   | +1  | 0     | -2   | +2 –1  |   |

**23.** Nitrous oxide, N2O, is commonly known as laughing gas. Which is the optimal structure for nitrous oxide?

.....

$$N=N=O$$
 or  $N=O=N$ 

**24.** Which is the 'best' structure for the nitrite ion (NO2<sup>-1</sup>)?

$$\begin{bmatrix} : \ddot{N} = \ddot{O} - \ddot{O} : \end{bmatrix}^{-}$$
 or  $\begin{bmatrix} : \ddot{O} = \ddot{N} - \ddot{O} : \end{bmatrix}^{-}$ 

- **25.** The carbonate ion has resonance.
  - (a) Draw one Lewis structure of the carbonate ion,  $CO3^{-2}$ .
  - (b) Draw all other resonance structures.
  - (c) What determines the number of resonance structures?
  - (d) Draw the resonance hybrid.

### 7.5: Strength of ionic & covalent bonding

- **26.** Calculate the enthalpy change ( $\Delta$ H) of this reaction: CO(g) + 2H2(g)  $\rightarrow$  CH3OH(g)
- 27. Ethyl alcohol (ethanol) was one of the first chemicals made by man. Calculate the overall enthalpy change for the reaction shown here H2CCH2 + H2O → CH3CH2OH
- **28.** Explain why these lattice energies differ: [sidebar = optional]

| MgF2 | 2957 kJ/mol |
|------|-------------|
| MgI2 | 2327 kJ/mol |



- **29.** Which has higher lattice energy? [sidebar = optional] Al2O3 Al2Se3
- **30.** Which has higher lattice energy? [sidebar = optional]

# 7.6: Molecular structures and geometries

**31.** Using the Lewis dot structures for CO<sub>2</sub> and BCl<sub>3</sub> shown here, use the VSEPR to determine bond angles, electron pair and molecular geometries.



| :     | ci  | :    |
|-------|-----|------|
|       | Ι   |      |
| : CI- | -B- | -ci: |

- 32. Use VSEPR to determine the electron pair and molecular geometries of:
  - (a) H2O
  - (b) SF4
- **33.** Use VSEPR to determine the electron pair and molecular geometries of each 'center' of the amino acid glycine.

ZnO NaCl