\qquad

CHE1031 Module 7 lecture examples: Chemical bonding

7.1: lonic bonding \quad [sidebar $=$ optional]

1. Combine aluminum and oxygen to create an ionic compound.
2. Write the electron configurations of the Cr^{+3} and Zn^{+2} cations.
3. Write the electron configurations of the K and Mg cations.
4. Write the electron configurations of the Se and Ianions.
5. Write the electron configurations of the P atom and anion.

7.2: Covalent bonding

6. Determine the types of bonds between these atoms and label their polarities.
$\mathrm{C}-\mathrm{H}$
S-H
$\mathrm{C}-\mathrm{N}$
$\mathrm{N}-\mathrm{H}$
C-O
$\mathrm{O}-\mathrm{H}$
7. Determine the types of bonds in potassium nitrate and show polarity arrows.
K^{+1}

\qquad

7.3: Lewis symbols \& structures

8. Use Lewis symbols and arrows to diagram out the formation of aluminum fluoride from aluminum and fluoride atoms.
9. Lewis structures are used to show the structure and bonding patterns of covalent molecules.

- A pair of shared e- = : = ---
- Remember to show the unbonded electron pairs

$$
\begin{aligned}
& \mathrm{H} .+\mathrm{H} . \longrightarrow \mathrm{H}: \mathrm{H} \\
& . \ddot{\mathrm{Cl}}:+. \ddot{\mathrm{Cl}}: \longrightarrow \text { : } \ddot{\mathrm{Cl}}: \stackrel{\mathrm{Cl}}{:} \mathrm{l}
\end{aligned}
$$

10. Draw Lewis structures for these:
CHO^{-1}
NO^{+1}
OF2
11. NASA's Cassini-Huygens mission detected a cloud of toxic hydrogen cyanide (HCN) on Titan, one of Saturn's moons. Titan's atmosphere also includes ethane ($\mathrm{H}_{3} \mathrm{CCH}_{3}$), acetylene (HCCH) and ammonia (NH 3). Draw their Lewis structures!
12. Both carbon monoxide and carbon dioxide are produced by combustion of fossil fuels. Draw their Lewis structures.
13. Draw the Lewis structure of nitric oxide (NO). It's an exception to the octet rule!
14. Draw the Lewis structure of beryllium dihydride (BeHz). It's an exception to the octet rule!
15. Draw the Lewis structure of boron trifluoride (BF3). It's an exception to the octet rule!
16. Draw the Lewis structure of phosphorus pentachloride (PCl 5). It's an exception to the octet rule!
17. Draw the Lewis structure of sulfur hexafluoride (SF6). It's an exception to the octet rule!
18. Write the Lewis structures for XeF2, XeF4, XeF6 and identify any exceptions to the octet rule.

7.4: Formal charges \& resonance

19. Calculate formal charges in ICl^{-1}. Where is the -1 charge?
\qquad
20. Calculate formal charges in carbon monoxide.
21. Which is the 'best' structure for carbon dioxide?

$\ddot{O}=\mathrm{C}=\ddot{\mathrm{O}}$	$: \mathrm{O} \equiv \mathrm{C}-\ddot{\mathrm{O}}:$	$\ddot{\mathrm{O}}=\mathrm{O}=\ddot{\mathrm{C}}$	Structure			
0	0	0	+1	0	-1	0
\cdots	+2	-2	Formal charge			

22. Which is the 'best' structure for the thiocyanate ion (-1)?

$\begin{array}{llllllllll}\text { Formal charge } & -1 & 0 & 0 & -2 & +1 & 0 & -2 & +2 & -1\end{array}$
23. Nitrous oxide, N 2 O , is commonly known as laughing gas. Which is the optimal structure for nitrous oxide?

24. Which is the 'best' structure for the nitrite ion $\left(\mathrm{NO}^{-1}\right)$?

25. The carbonate ion has resonance.
(a) Draw one Lewis structure of the carbonate ion, CO^{-2}.
(b) Draw all other resonance structures.
(c) What determines the number of resonance structures?
(d) Draw the resonance hybrid.
7.5: Strength of ionic \& covalent bonding
26. Calculate the enthalpy change $(\Delta \mathrm{H})$ of this reaction:
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH} 3 \mathrm{OH}(\mathrm{g})$
27. Ethyl alcohol (ethanol) was one of the first chemicals made by man. Calculate the overall enthalpy change for the reaction shown here
$\mathrm{H}_{2} \mathrm{CCH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
28. Explain why these lattice energies differ: [sidebar = optional]

MgF2 $2957 \mathrm{~kJ} / \mathrm{mol}$
Mgl2
2327 kJ/mol
\qquad
29. Which has higher lattice energy?
[sidebar = optional]
$\mathrm{Al}_{2} \mathrm{O}_{3}$
$\mathrm{Al}_{2} \mathrm{Se} 3$
30. Which has higher lattice energy? [sidebar = optional]

ZnO
NaCl

7.6: Molecular structures and geometries

31. Using the Lewis dot structures for CO 2 and BCl_{3} shown here, use the VSEPR to determine bond angles, electron pair and molecular geometries.
```
O-*}=\textrm{C}=\stackrel{*}{O
```


32. Use VSEPR to determine the electron pair and molecular geometries of:
(a) $\mathrm{H}_{2} \mathrm{O}$
(b) SF_{4}
33. Use VSEPR to determine the electron pair and molecular geometries of each 'center' of the amino acid glycine.

