\qquad

CHE1031 Lecture 8 examples: Thermochemistry

8.1: Energy basics

1. You push a watermelon off out of a third-floor window. How is energy transferred or transformed?
2. Calculate the heat capacity of two cast-iron frying pans, one large and one small. The temperature of each pan is increased by 50 degrees. That requires an input of 18,150 J of energy for the small pan, and 90,700 J for the large pan.
3. Calculate the specific heat of two cast-iron frying pans, one large and one small. The temperature of each pan is increased by 50 degrees. That requires an input of $18,150 \mathrm{~J}$ of energy for the small pan, and $90,700 \mathrm{~J}$ for the large pan. The mass of the small pan is 808 g and the large pan is 4040 g .
4. A flask containing 8.0 E 2 g of water is heated and the temperature of the water increases from 21 to $85^{\circ} \mathrm{C}$. How much heat was used?
5. A piece of metal has a mass of 348 g and absorbs 6.64 kJ of heat as its temperature increases from 22.4 to $43.6^{\circ} \mathrm{C}$. Calculate the specific heat of the metal and try to identify it.
6. A piece of metal weighs 217 g and absorbs 1.43 kJ of heat. Its temperature increases from 24.5 to $39.1^{\circ} \mathrm{C}$. Calculate the metal's specific heat.
7. A solar power plant stores energy overnight by melting salt: a mixture of sodium nitrate and potassium nitrate. If one ton of this salt, with a heat capacity of $1.53 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$, is heated from 260 to $550^{\circ} \mathrm{C}$, how much energy can be stored?

8.2: Calorimetry

8. A $360-\mathrm{g}$ piece of steel rebar is dropped into 425 mL of water at $24^{\circ} \mathrm{C}$. Water temperature increased to $42.7^{\circ} \mathrm{C}$. The specific heat of iron is $0.449 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$. What was the initial temperature of the rebar?
9. A 59.7-g piece of metal was submerged in boiling water and then quickly transferred into 60.0 mL of water whose Initial temperature was 22.0 C . The final temperature is 28.5 C . What is the specific heat of the metal? Its identity?
10. When 50.0 mL of 1.00 M HCl and 50.0 mL of 1.00 M NaOH , both at initial temperatures of 22.0 C , are mixed in a calorimeter, the temperature of the solution increases to 28.9C. How much heat is produced by the reaction?
11. When 3.00 g of KCl is added to 3.00 E 2 g of water in a calorimeter, the temperature decreased by $1.05^{\circ} \mathrm{C}$. How much heat is involved in dissolution of KCl ?

8.3: Enthalpy

12. How much energy is produced when 28.5 g of water are made?
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta \mathrm{H}=-286 \mathrm{~kJ}$
13. When 0.0500 mol of HCl reacts with 0.0500 mol of NaOH to form 0.0500 mol of $\mathrm{NaCl}, 2.9$ kJ of heat are produced. What is $\Delta \mathrm{H}$ per mole of acid? $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H} 2 \mathrm{O}(\mathrm{l})$
14. When 1.34 g of Zn reacts with 60.0 ml of $0.750 \mathrm{M} \mathrm{HCl}, 3.14 \mathrm{~kJ}$ of heat are produced. Determine the enthalpy change per mole of Zn :
$\mathrm{Zn}(\mathrm{s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl} 2(\mathrm{aq})+\mathrm{H} 2(\mathrm{~g})$
15. Use reactions $1-3$ to calculate the enthalpy for this reaction:

$$
\mathrm{ClF}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{ClF}_{3}(\mathrm{~g})
$$

$\Delta \mathrm{H}=$ \qquad
(1) $2 \mathrm{OF} 2(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g})$
(2) $2 \mathrm{ClF}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}_{2} \mathrm{O}(\mathrm{g})+\mathrm{OF}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}=-49.4 \mathrm{~kJ}$
(3) $\mathrm{ClF}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 1 / 2 \mathrm{Cl}_{2} \mathrm{O}(\mathrm{g})+3 / 2 \mathrm{OF} 2(\mathrm{~g})$
$\Delta \mathrm{H}=+205.6 \mathrm{~kJ}$
$\Delta \mathrm{H}=+266.7 \mathrm{~kJ}$
\qquad
16. Aluminum chloride can be formed from its elements:

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s})
$$

(1) $\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{HCl}(\mathrm{aq})$
(2) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$
(3) $\mathrm{AlCl}_{3}(\mathrm{aq}) \rightarrow \mathrm{AlCl}_{3}(\mathrm{~s})$
(4) $2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H} 2(\mathrm{~g})$

$$
\begin{aligned}
& \Delta \mathrm{H}= \\
& \Delta \mathrm{H}=-74.8 \mathrm{~kJ} \\
& \Delta \mathrm{H}=-185.0 \mathrm{~kJ} \\
& \Delta \mathrm{H}=+323 \mathrm{~kJ} \\
& \Delta \mathrm{H}=-1049 \mathrm{~kJ}
\end{aligned}
$$

