

2. Atoms, molecules & ions

2.7: Naming chemical compounds

- Identifying a molecule's type
- Naming ionic compounds
 - Cations
 - Anions: mono- and polyatomic
 - Ionic compounds
- Naming molecular compounds
- Naming acids and bases

Predicting ionic charge

Use group numbers to predict ionic charge as shown below.

Which type of molecule is this?

There are three distinct naming systems, so your first task is determining what type of compound you're dealing with:

lonic

Acid

Molecular

Are these examples ionic, acid or molecul

Fe(OH) ₂	HBrO ₃
XeO ₃	Fe ₂ (CO ₃) ₃
Cu(NO ₃) ₂	SO ₃
H ₃ PO ₄	CO ₂
SF ₆	Cd(II)(ClO ₄) ₂
CaHCO ₃	N_2O_4
Sn(II)F ₂	HBr
P_4S_6	IF ₅
HF	HCIO ₃
HCN	(NH₄)₂SO₄

Naming cations

Cations are <u>positively</u> charged ions - most often **metals**. With one exception, cations are <u>mono</u>atomic.

Cations are named for the element they are derived from. <u>Transition metals</u> (the Midwest) must include charge as (Roman numerals).

Na⁺¹ Mg⁺² Fe⁺² Al⁺³ Cu⁺¹ Sr⁺² Mn⁺² Cs⁺¹ Ca⁺² Sn⁺² Cr⁺³

Naming monoatomic anions

Anions are <u>negatively</u> charged ions formed from non-metals.

Anions can be either mono- or polyatomic.

Monoatomic anions consist of a single element (can have multiple copies). Anions get the <u>root</u> name of their element + <u>-ide</u> suffix.

ide	
F ⁻¹ P ⁻³ O ⁻² Cl ⁻¹ N ⁻³ l ⁻¹ Br ⁻¹ S ⁻²	Element names can be found in the table below the periodic table on the front cover of your text.

Naming polyatomic anions

Polyatomic anions are combinations of a more than one non-metal atom.

Generally, a non-metal & one or more oxygen atom(s).

Naming? Root name of the non-oxygen atom with a suffix:

• hypo _____-ite • -ite • -ate • per _____-ate NO_2^{-1} NO_3^{-1} ClO_1^{-1} ClO_2^{-1} ClO_4^{-1} HCO_3

Families of polyatomic anions

	~		
		•	Π.
		× .	
~	-	-	
	-		

NH4 ⁺ AsO4 ⁻³	ammonium arsenate	Cr ? CrO ₄ ⁻² Cr ₂ O ₇ ⁻²	chromium (x) chromate dichromate		
		MnO ₄ -1	permanganate		
C ₂ H ₃ O ₂ ⁻¹ CN ⁻¹ SCN ⁻¹	acetate cyan <u>ide</u> thiocyanate	NO2 ⁻¹ NO3 ⁻¹	nitrite nitrate	S ⁻² SO ₃ ⁻² SO ₄ ⁻²	sulfide sulfite sulfate
CO3 ⁻² HCO3 ⁻¹	carbonate hydrogen carbonate	O ₂ -2 OH-1	peroxide hydroxide	HSO3 ⁻¹ SCN ⁻¹	hydrogen sulfite thiocyanate
Cl ⁻¹ ClO ⁻¹ ClO ₂ ⁻¹ ClO ₃ ⁻¹ ClO ₄ ⁻¹	chloride hypochlorite chlorite chlorate perchlorate	PO ₄ -3 HPO ₄ -2 H ₂ PO ₄ -1	phosphate hydrogen phos dihydrogen ph	sphate osphate	

Formulas of ionic compounds

All molecules (ionic, molecular, or acid) have a <u>net charge of **zero**</u>. So total positive and negative charges must be equal - must cancel out.

How do you ensure a net zero charge?

CatxAny

Mg Cl	Sr SO ₄
Na O	Cr ClO ₃
Na F	Li PO ₄
Ba Br	Ca NO ₃
Fe S	Cs BrO ₃
Ni N	Fe CO ₃

Ionic formulas are <u>empirical</u> formulas

If you are given a cation and anion and are asked to give the formula, you can write ONLY the <u>empirical formula</u> (i.e. ratio of elements).

Al and Cl ions	Na and PO_4 ions
Al and O ions	Zn and SO_4 ions
Mg and NO_3 ions	Fe and CO ₃ ions

Practice naming ionic compounds

Naming ionic compounds is fairly straightforward.

Name the cation first, and the anion second

NEVER include the subscript numbers in the name.

Mg Cl	Sr SO ₄
Na O	$Cr ClO_3$
Na F	Li PO ₄
Ba Br	Ca NO ₃
Fe S	Cs BrO ₃
Ni N	Fe CO ₃

Molecular names use prefixes

Remember that a molecular compound is:

Elements are named from <u>left to right</u> (as found in the peroidic table):

Molecular compounds use <u>Greek prefixes</u> to 'name' subscript numbers.

mono	
di	
tri	
tetra	
penta	Both elements get prefixes
hexa	EXCEPT when there is only
hepta	a single atom of the first element.
octa	
nona	
deca	

Naming molecular compounds

Elements are named from left to right (as found in the peroidic table):

- Left-hand element gets the element name.
- Right-hand element is named for its root + <u>-ide</u> suffix.

Molecular compounds use <u>Greek prefixes</u> to '**include'** subscript numbers.

(Net charge of molecular compounds is still zero.)

C_2O_2 CO_2 CO	
P ₄ S ₁₀	SO ₂
Cl ₂ O	PCI ₅
N_2O_4	S ₂ Cl ₂
NF ₃	SiBr ₄

NOTE: It's difficult to predict the formula of molecular compounds.

Naming acids (a bit like ionics)

Remember that acids are compounds that can <u>donate protons</u> (H^+). Acid formulas always **begin with H**: HCl, HBr, H_2SO_4

Since all acids have protons, names are based on the anion name.

MONOatomic acids: hydro root -ic acid HCI HBr H_2S HF POLYatomic acids: change the suffix & add the word acid (no hydro-) • -ate --> -ic acid • -ite --> -ous acid H_2SO_3 HCIO H_2SO_4 HCIO₂ HClO₃ HCIO₄