.

CHE 2060: Homework set 2 – KEY

Note: In questions involving drawing resonance contributors, assume that all second-row atoms should have a complete octet in all structures with the exception of positively charged carbons.

2.1: Covalent bonding in organic molecules

1. Rank the bonds a-f below according to increasing bond length.

2. For each of the bonds indicated by arrows b-f in the figures below, describe the bonding picture. An example is given for bond 'c'.

Note that for a double bond (bond 'c'), you will need to describe two bonds.

<u>Note</u>: you are being asked to describe the bonding picture for one specific resonance contributor.

bond a: "this is a π bond formed by the overlap of an sp³ orbital on one carbon and an sp² orbital on another carbon."

- (a) this is a σ bond formed by the overlap of an sp3 orbital on one carbon and an sp2 orbital on another carbon.
- (b) this is a σ bond formed by the overlap of an sp2 orbital on one carbon and an sp2 orbital on another carbon.
- (c) this is a σ bond formed by the overlap of an sp2 orbital on a carbon and an sp2 orbital on a nitrogen, combined with a π bond formed by the overlap of a 2p orbital on a carbon and a 2p orbital on a nitrogen.
- (d) This is a σ bond formed by the overlap of an sp2 orbital on a nitrogen and a 1s orbital on a hydrogen.

CHE 2060: Principles of Organic Chemistry Vermont Tech

.

3. Below is the structure of the cholesterol-lowering drug Lovastatin. For bonds a, b, c, and d:(1) Describe hybridization of the atoms in the bond; and (2) predict the trend in bond length.

Lovastatin

Bond	atoms	hybridization	Length (pm)	ranking
а	C - C	σ, sp3 – sp3	154	longest
b	C – C	σ, sp2 – sp3	< 154	
d	C – C	o, sp2 – sp2	<< 154	
е	0 – C	σ, sp3 – sp3	143	
f	C - O	σ, sp2 – sp3	< 143	
С	C = C	π, p - p	134	shortest

- **4.** Draw a 3D-accurate picture showing the orbitals involved in bonding for dimethyl ether (CH3OCH3).
 - Draw all bonds, both σ and π , as overlapping orbitals.
 - Indicate whether each orbital is s, p, sp, sp², or sp³, and indicate (with words or a color scheme) orbitals that are pointed into or out of the plane of the page.
 - Locate all lone pairs in their appropriate orbitals.

An example is provided for ethene, CH₂CH₂:

orbital overlap in ethene

lue orbitals pointing into page ad orbitals pointing out of page

.

5. For the bonds labeled a-f below, describe the orbitals involved in the bonds indicated by the arrows.

- (a) This is a σ bond formed by the overlap of an sp2 orbital on one carbon and an sp3 orbital on another carbon.
- (b) This is a σ bond formed by the overlap of an sp2 orbital on a carbon and an sp2 orbital on an oxygen, combined with a π bond formed by the overlap of a 2p orbital on a carbon and a 2p orbital on an oxygen.
- (c) This is a σ bond formed by the overlap of an sp3 orbital on a carbon and an sp3 orbital on another carbon.
- (d) This is a σ bond formed by the overlap of an sp3 orbital on a carbon and an sp3 orbital on an oxygen.
- (e) This is a σ bond formed by the overlap of an sp3 orbital on a carbon and an sp3 orbital on an oxygen.
- (f) This is a σ bond formed by the overlap of an sp2 orbital on a carbon and an sp3 orbital on a nitrogen.